3,3,3-TRIFLUOROPROPYL(METHYL)CYCLOSILOXANES

I. Isolation and Identification of Trifluoropropyl(methyl)dimethylcyclosiloxanes

E. G. Kagan, Yu. A. Yuzhelevskii, A. L. Klebanskii, O. N. Larionova, and A. V. Kharlamova

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 3, No. 5, pp. 819-822, 1967

UDC 547.79'128:543.544

Mixtures of cyclosiloxanes containing 3, 3, 3-trifluoropropyl(methyl)and dimethylcyclosiloxanes units, are separated by vacuum distillation and GLC. Three hitherto undescribed compounds are isolated and characterized. Six new cyclosiloxanes are identified by indirect methods, in cuts which are mixtures. Chromatography and fractional distillation give results which are in satisfactory agreement.

It was previously reported that a mixture of cyclosiloxanes, consisting of 3,3,3-trifluoropropyl(methyl)siloxane components (Φ) and dimethylsiloxane ones (D) can be obtained by catalytic rearrangement of the products of joint hydrolysis of 3,3,3-trifluoropropyl(methyl)dichlorosilane and dimethyldichlorosilane (mole ratio 1:1). From the mixture of products were isolated [1] the following individual cyclotetrasiloxanes: ΦD_3 , $\Phi_2 D_2$, $\Phi_3 D$, and the cyclopentasiloxane $\Phi_3 D_2$. Subsequently conditions for analyzing this mixture by high temperature GLC were chosen, and of the 18 peaks on the chromatograms only 12 could be interpreted.

In the present work the above mixture of cyclosiloxanes was separated by vacuum distillation. The starting mixture and all the cuts were analyzed chromatographically. The individual compounds were isolated, and among them 1, 3-bis(3, 3, 3-trifluoropropyl)-1, 3, 5, 5-tetramethylcyclotrisiloxane (Φ_2 D), bis(3,3,3-trifluoropropyl)octamethylcyclopentasiloxane (Φ_2D_3) , and 1, 3, 5, 7-(3, 3, 3-trifluoropropyl)-1, 3, 5, 7, 9, 9-hexamethylcyclopentasiloxane (Φ_4 D) (Table 1). From the chromatographic analysis data previously given [1], 3,3,3-trifluoropropylheptamethylcyclotetrasiloxane (ΦD_3), 1,3,5-tris(3,3,3-trifluoropropyl)-1,3,5,7,7-pentamethylcyclotetrasiloxane (Φ_3D) , and tris(3, 3, 3-trifluoropropyl)heptamethylcyclopentasiloxane $(\Phi_3 D_2)$ are obtained purer. Table 1 gives their properties.

Comparison of the boiling points of some cyclosi-loxanes shows that on passing from $\Phi_m D_n$ to $\Phi_{m+1}D_{n-2}$

(i.e. on replacing 2 units D by one unit Φ) there is little change in the boiling point. At the same time it

Fig. 1. Chromotagrams of intermediate cuts (Griffin chromatograph, He rate 1.9 l/hr; pressure at column outlet 30 mm): a) 55.7° (1 mm) cut; band rate 5 mm/min; column temperature 172°; b) mixture of cuts 86.3– 97.6° (1 mm) and 100.2–103.6° (1 mm); 15 mm/min, column temperature 203°; c) cut 106.6– 118.3° (0.2 mm), band rate 5 mm/min; column temperature 202°.

emerged that $\Phi_{m+1}D_{n-2}$ comes off the chromatograph column immediately after $\Phi_m D_n$. This made it possible to make assumptions regarding the unknown components of some mixed cuts, obtained by fractional distillation (Fig. 2). The specific refraction R_D , mean molecular weight M, and elemental composition calculated using these assumptions are in satisfactory agreement with the experimental data (Table 2).

Thus, all the components of the mixture of 3,3,3trifluoropropyl(methyl)dimethylcyclosiloxanes investigated were either isolated pure or identified in

Table 1	
roperties of 3,3,3-Trifluoropropyl(methyl)dimethylcyclosiloxanes	Properties

مىمى مىلى بىرى بىلى بىرى بىلى بىرى بىلى بىلى ب	М		MRD		Elemental composition, %										
	Bp, ℃	20	20		1	Found	Calcu- lated	С		Н		F		Si	
Compound	(pressure mm)	n _D	dã	Found	Calcu- lated			Found	Calcu- lated	Found	Calcu- lated	Found	Calcu- lated	Found	Calcu- lated
$\begin{array}{c} \hline & \Phi_2 D^*, \ C_{10} H_{20} F_6 O_3 S i_3 \\ \Phi_2 D_3^*, \ C_{14} H_{22} F_6 O_5 S i_5 \\ \Phi_4 D^*, \ C_{18} H_{34} F_{12} O_5 S i_5 \\ \Phi D_3, \ C_{10} H_{25} F_3 O_4 S i_4 \\ \Phi_3 D, \ C_{14} H_{27} F_9 O_4 S i_4 \\ \Phi_3 D_2, \ C_{16} H_{33} F_8 O_5 S i_5 \end{array}$	102 (20) 98.5 (1) 126.5 (0.2) 99 (20) 105 5 (1) 118 (0.9)	1.3697 1.3830 1.3773 1.3840 1.3738 1.3800	1.1685 1.1131 1.2327 1.0598 1.2086 1.1752	390.0 529.4 698.5 376.5 540.0 610.0	386.5 534.7 698.8 378.5 542.6 616.6	74.76 112.07 130.48 83.51 102.49 121.51	74.62 111.90 130.60 83.91 102.61 121.25	31.7 31.3 30.8 31.2 30.6 31.8	31.2 31.4 31.0 31.7 31.0 31.2	5.2 6.3 5.8 6.4 5.0 5.5	5.2 6.0 6.3 6.6 5.0 5.4	28.8 21.1 31.9 16.0 31.7 28.2	29.6 21.3 32.6 15.1 31.5 27.7	21.9 25.2 20.1 28.9 20.8 23.0	21.7 26.2 20.0 29.6 20.7 22.7

*New compound

				Cut	Cut composition		g	^M mean		R _D		Elemental composition, %							
Frac- tion num- ber	Bp, ^o C (pressure mm)	_ ⁿ D	d420	component *, %**			boo					С		Н		F		Si	
				1	2	3	Formula pro for X _n	Found	Calculated	Found	Calculated	Found	Calculated	Found	Calculated	Found	Calculated	Found	Calculated
1	71.2-71.8	1.3787	1.0494	D4 (15)	X ₁ (85)		ΦD₂	305.5	303.2	0.2201	0.2200	31.4	31.7	6.7	6.4	29.7	29.2	16.8	15.9
11	122.2 - 122.4	1.3849	1.0810	X_2	$\Phi_2 D_2$		ΦD₄	454.4	458.0	0.2167	0.2169	31.1	31.6	6.4	6.4	17.8	17.5	27.9	28.4
ш	114.8-115.2	1.3855	1.1301	$\Phi_3 D$	X ₃	$\Phi_3 D_2$	$\Phi_2 D_4$	585.0	600.9	0.2076	0 2089	31.0	31.4	5.9	6.0	22.7	22.0	26.1	25.9
IV	117	1.3755	1.2371	Φ_4	X_4	-	$\Phi_3 D_3$	657.0	644,5	0.1853	0.1862	30.8	30.9	4.7	4.9	33.5	33.0	20.0	19.9
v	(0.2) 150152 (0.5)	1.3771	1.2254	(70) X ₅ (28)	(30) Φ_5 (72)	-	$\Phi_4 D_2$	788.0	778.6	0.1836	0.1831	31.4	30.8	4.6	4.7	33.9	34.5	20.0	19,0

Table 2 Assigning Unknown Components of Mixed Cuts

 * In order of yield on the chromatograph column; X_n = unknown components. ^** Calculated from the chromatogram (see Fig. 2).

Table 3

Composition of a Mixture of 3,3,3-Trifluoropropyl(methyl)dimethylcyclosiloxanes

	Co	ontent, %		
				
	In the mixture	he rings	Dif-	
Compo-	charged (from	to \$4D	fer-	
nent	the results of	From	By chroma-	ence,
	fractional	tractional	tographing	%
	distillation)	distillation	the starting	
·····	<u> </u>	results	<u>mixture</u>	
D	0.10	0.51	0.19	0.22
D _s	0.49	0.51	0.18	-0.00
D₄ D	1,04	1.07	0.84	-0.23
D5	0.10	0.17	1	-0.17
ΦD_2	2.14	2.21	1.55	+0.00
ΦD_3	12,00	12.90	13.43	+0.40
ΨD_4	2.39	2.47	2.89	-042
Φ ₂ Ο Φ D	2.90	21.40	2.69	-0.14
$\Psi_2 D_2$	6.05	01.49 6.95	30.75	-0.74
$\Phi_2 D_3$	0.05	0.23	0.70	-0.00
$\Psi_2 D_4$	0.25	0.00		-0.50
Ψ3 Φ D	22.08	1.14	1.09	-0.07
Φ ₃ D	6.00	6.13	22.90	+ 1.02
$\Phi_3 D_2$	0.22	0.43	1,40	- 0.80
$\Phi_3 D_3$	5 30	5.57	6 37	+ 0.00
φ. - D	2 47	9.55	0.07	-0.33
φ.D.	0.17	00.2	2.22	0.00
Φ.	013		_	
Still	1 19			_
residue				
Losses	1.76	-		
	<u>.</u>	-		
Total	100 00	100.00	100.00	
Mean				±047
differ-	-			
ence	1			

Fig. 2. Chromatograms of mixed cuts (see Table 2): a-e) Griffin chromatograph; He rate 1.9 *l/h*r; band speed 5 mm/min; pressure at column exit: a) 300 mm; b-e) 30 mm; a) cut I; column temperature 132°; b) cut II; column temperature 172°; c) cut III; column temperature 172°; d) cut IV; column temperature 202°;
e) cut 122-126° (0.2 mm); column temperature 202°; f) fraction V; Pye chromatograph; Ar rate 9 *l/*hr; column temperature 160°; pressure at column outlet 760 mm.

mixed cuts. The data on the quantitative composition of the mixture (Table 3) shows satisfactory agreement between results of chromatographic analysis of all mixtures, and results of fractional distillation. distillation results, the content of each component in all the fractions, pure, intermediate, and mixed, was taken into account.

The authors thank R. A. Mogilevskaya and coworkers who made the elementary analyses.

REFERENCES

1. Yu. A. Yuzhelevskii, E. V. Kogan, and A. L. Klebanskii, ZhOKh, 33, 3773, 1963.

2. I. P. Yudina, Yu. A. Yuzhelevskii, and K. I. Sakodynskii, in collection: Gas Chromatography [in Russian], NIITEKhim, Moscow, 1965.

3. A. L. Klebanskii, Yu. A. Yuzhelevskii, E. V. Kogan, and E. G. Kagan, ZhOKh, **32**, 323, 1962.

27 December 1965

Lebedev All-Union Scientific Research Institute for Synthetic Rubber, Leningrad

EXPERIMENTAL

Vacuum fractionation was carried out in argon through a column with a rating of 38 theoretical plates. Most of the chromatographic analyses were run on a Griffin chromatograph, column diameter 6 mm, length 1740 mm, stationary phase SKTFT-50 rubber on Celite 545, carrier gas helium, catharometer detector.

Three of the highest boiling fractions were analyzed with a Pye chromatograph, column diameter 4 mm, length 1524 mm, stationary phase polyethylene glycol adipate on Celite 545, argon ionization detector.

Molecular weights were found cryoscopically in Freon-112 (standard chromatographically pure Φ_3 [3]). In calculating the fractional